Abstract
The continuity, self-similarity, and self-affinity of a microscopic contact surface can be described by the Weierstrass–Mandelbrot (W–M) function in fractal theory. To address the problems that the existing normal contact load fractal model does not take into account the effect of thermal stress and is not applicable to the temperature variation in the joint surface of the giant magnetostrictive ultrasonic vibration systems, a fractal model of thermal–elastic–plastic contact normal load fractal is established based on fractal theory. The model is an extension of the traditional model in terms of basic theory and application scope, and it takes into account the effects of temperature difference, linear expansion coefficient, fractal dimension, and other parameters. Finally, the effect of the temperature difference at the joint surface on the normal load of the thermoelastic contact is revealed through numerical simulations. The results show that the nonlinearity of the contact stiffness of the thermoelastic joint surface is mainly related to the surface roughness and the fractal dimension, while the effect of the temperature change on the joint surface properties within a certain range is linear.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献