Fractal Model of Contact Thermal Stiffness

Author:

Chen Yunshuai,Li PengyangORCID,Sun JianORCID,Shang Miao,Shao Limin

Abstract

The continuity, self-similarity, and self-affinity of a microscopic contact surface can be described by the Weierstrass–Mandelbrot (W–M) function in fractal theory. To address the problems that the existing normal contact load fractal model does not take into account the effect of thermal stress and is not applicable to the temperature variation in the joint surface of the giant magnetostrictive ultrasonic vibration systems, a fractal model of thermal–elastic–plastic contact normal load fractal is established based on fractal theory. The model is an extension of the traditional model in terms of basic theory and application scope, and it takes into account the effects of temperature difference, linear expansion coefficient, fractal dimension, and other parameters. Finally, the effect of the temperature difference at the joint surface on the normal load of the thermoelastic contact is revealed through numerical simulations. The results show that the nonlinearity of the contact stiffness of the thermoelastic joint surface is mainly related to the surface roughness and the fractal dimension, while the effect of the temperature change on the joint surface properties within a certain range is linear.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3