Optimization of the Factory Layout and Production Flow Using Production-Simulation-Based Reinforcement Learning

Author:

Choi Hyekyung1,Yu Seokhwan1ORCID,Lee DongHyun1ORCID,Noh Sang Do1ORCID,Ji Sanghoon2,Kim Horim2,Yoon Hyunsik2,Kwon Minsu2,Han Jagyu2

Affiliation:

1. Department of Industrial Engineering, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon-si 2066, Gyeonggi-do, Republic of Korea

2. Samsung Display, 1 Samsung-ro, Giheung-gu, Yongin-si 11773, Gyeonggi-do, Republic of Korea

Abstract

Poor layout designs in manufacturing facilities severely reduce production efficiency and increase short- and long-term costs. Analyzing and deriving efficient layouts for novel line designs or improvements to existing lines considering both the layout design and logistics flow is crucial. In this study, we performed production simulation in the design phase for factory layout optimization and used reinforcement learning to derive the optimal factory layout. To facilitate factory-wide layout design, we considered the facility layout, logistics movement paths, and the use of automated guided vehicles (AGVs). The reinforcement-learning process for optimizing each component of the layout was implemented in a multilayer manner, and the optimization results were applied to the design production simulation for verification. Moreover, a flexible simulation system was developed. Users can efficiently review and execute alternative scenarios by considering both facility and logistics layouts in the workspace. By emphasizing the redesign and reuse of the simulation model, we achieved layout optimization through an automated process and propose a flexible simulation system that can adapt to various environments through a multilayered modular approach. By adjusting weights and considering various conditions, throughput increased by 0.3%, logistics movement distance was reduced by 3.8%, and the number of AGVs required was reduced by 11%.

Funder

Samsung Display Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3