Flatness-Based Active Disturbance Rejection Control for a PVTOL Aircraft System with an Inverted Pendular Load

Author:

Villaseñor Rios Cesar Alejandro VillaseñorORCID,Luviano-Juárez AlbertoORCID,Lozada-Castillo Norma BeatrizORCID,Carvajal-Gámez Blanca EstherORCID,Mújica-Vargas DanteORCID,Gutiérrez-Frías OctavioORCID

Abstract

This paper presents a systematic procedure for the control scheme design for a PVTOL aircraft system with an inverted pendular load, which is a nonlinear underactuated system. The control scheme is based on the use of angular movement as an artificial control in order to propose new auxiliary control inputs. This is achieved by a linear extended state observer-based active disturbance rejection control to reject both nonmodeled dynamics and external disturbances. The flying planar inverted pendulum is then linearized around an unstable equilibrium point, and the resulting system is subdivided into two subsystems: (1) the height system, and (2) the horizontal pendulum system. For the height system, a linear extended state observer-based active disturbance rejection control is proposed in order to accomplish a take-off and landing task in the presence of external disturbances and non-linearities neglected in the linearization process. The flatness property in the horizontal-pendulum system is exploited in order to propose another active disturbance rejection control of linear nature. The flatness of the tangentially linearized model provides a unique structural property that results in an advantageous low-order cascade decomposition of the linear extended state observer design. Numerical simulations show the effectiveness of the proposed control scheme in trajectory tracking tasks in the presence of disturbances caused by crosswinds with random amplitudes.

Funder

Instituto Politécnico Nacional

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference37 articles.

1. The inverted pendulum: A fundamental benchmark in control theory and robotics;Boubaker;Proceedings of the International Conference on Education and e-Learning Innovations,2012

2. High-dimensional underactuated motion planning via task space control;Shkolnik;Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,2008

3. Linear active disturbance rejection control of underactuated systems: The case of the Furuta pendulum

4. Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems

5. Output feedback image-based visual servoing control of an underactuated unmanned aerial vehicle

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3