Research on Multi-Body Collision Dynamics of Ball Cage Flexible Drill Pipe Considering Borehole Curvature

Author:

Zhu Xiuxing1ORCID,Xu Yingpeng1,Mao Chenyang1,Zhou Weixia1,Xia Yuanbo2,Ye Guigen1,Zhou Bo1

Affiliation:

1. College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China

2. CNPC Tianjin Bo-Xing Engineering Science &Technology Co., Ltd., Tianjin 300451, China

Abstract

A ball cage flexible drill pipe is a new type of ultra-short-radius drilling tool, which consists of multiple flexible joints hinged together. During the drilling process, the flexible members will come into contact and wear, which reduces the efficiency of load transfer. The multi-body collision contact dynamics model was proposed to study the performance of the ball cage flexible drill pipe. The method considered the influence of the borehole curvature. The kinematic equations of the ball cage flexible drill pipe were established. The Lankarani–Nikravesh collisional contact model was used to characterize the normal contact force, and the Coulomb friction model was used to describe the tangential contact force. The multi-body motion state of the flexible drill pipe was simulated, the contact force distribution of the flexible drill pipe during the motion cycle was analyzed, and the influence of the borehole curvature radius on the size of the flexible joints and the contact force was studied. The results show that the running form of the ball cage flexible drill pipe shows a “folded” shape compared with the initial form; the contact force of different flexible joints is in a state of fluctuation; the normal contact force is much larger than the tangential contact force; the matching relationship between the borehole curvature and the length and radius of the flexible joints is derived, which provides criteria for the design of the flexible joints to ensure the reliability of the flexible drill pipe in large curvature borehole; the borehole curvature has an important influence on the collision contact force and load transfer efficiency of flexible drill pipe.

Funder

National Key Research and Development Program of China

Independent Innovation Research Program of China University of Petroleum

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3