The Antibacterial Activity of Novel Bacteriophages and the Emergence of Bacterial Resistance to Phage Infections: An In Vitro Study

Author:

Moda-Silva Letícia de Souza1ORCID,Oliveira Viviane de Cássia12ORCID,da Cruz Tatiana Areas1ORCID,da Rocha Amanda Carolina Souza Delfino1ORCID,Watanabe Evandro13ORCID

Affiliation:

1. Human Exposome & Infectious Diseases Network (HEID), Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto 14040-902, SP, Brazil

2. Department of Dental Materials & Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil

3. Department of Restorative Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil

Abstract

The emergence of bacteria resistant to bacteriophage (phage) infection may compromise the success and effectiveness of phage therapy. The aim of this study was to evaluate the in vitro antibacterial activity of five novel phages, as well as the emergence of bacterial resistance to phage infections. The antibacterial activity of lytic phages was evaluated against standard strains of Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25927), Enterococcus faecalis (ATCC 29212) and Staphylococcus aureus (ATCC 6538). Phages were initially grown in the presence of host bacteria in an exponential growth phase, then purified and titrated. In a second exposure, 20 μL of each phage was inoculated with 106 CFU/mL of P. aeruginosa/E. coli/E. faecalis/S. aureus, separately. In a third exposure, resistant colonies were isolated, cultivated and exposed again to the phages. Bacterial colonies resistant to phage infection after the third exposure were evaluated for their susceptibility profile to different antibiotics via the diffusion disk technique. The diameters of the inhibition halos were evaluated with Image J software (version 1.54g) and the definition of the susceptibility profile to antibiotics was determined according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. In addition, fourteen cocktails with different phages were formulated to evaluate the emergence of a bacterial resistance to phage infections. The phages exhibited specificity for P. aeruginosa and did not infect E. coli, E. faecalis and S. aureus. The presence of bacterial colonies resistant to phage infection in the three successive exposures was identified, and the bacterial resistance to phage infection was confirmed in all phages titrated at 108 PFU/mL, in four phages titrated at 1010 PFU/mL and in one phage titrated at 1013 PFU/mL. The development of a resistance to infection by phages (~108 PFU/mL) did not change the susceptibility profile of P. aeruginosa to antibiotics and, when evaluating the emergence of a resistance to infection by phage cocktails (~108 PFU/mL, ~1010 PFU/mL, ~1013 PFU/mL), bacterial resistance to phage infection was confirmed in all cocktails with phages titrated at 108 PFU/mL, in ten cocktails with phages titrated at 1010 PFU/mL and in seven cocktails with phages titrated at 1013 PFU/mL. In conclusion, the presence of resistant P. aeruginosa colonies to phage infection after successive exposures was evidenced, although some phages at title ~1010 PFU/mL and ~1013 PFU/mL were effective in inhibiting the growth of resistant colonies. The development of resistance did not change the susceptibility profile of P. aeruginosa to antibiotics. Variants of P. aeruginosa that were resistant to phage infection were isolated and their resistance to infection via the phage cocktail was demonstrated regardless of the viral titer, although some cocktails at title ~1010 PFU/mL and ~1013 PFU/mL were effective in inhibiting the growth of resistant colonies. Despite the emergence of bacterial variants resistant to phage infection, new studies involving the applicability of phages in the control of infections must be conducted.

Funder

São Paulo Research Foundation

Pro-Rectory of Research and Innovation at the University of Sao Paulo

National Council for Scientific and Technological Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3