The Algebra and Calculus of Stochastically Perturbed Spacetime with Classical and Quantum Applications

Author:

Pilipović Dragana1ORCID

Affiliation:

1. Department of Physics, University of Illinois Chicago, Chicago, IL 60607, USA

Abstract

We consider an alternative to dark matter as a potential solution to various remaining problems in physics: the addition of stochastic perturbations to spacetime to effectively enforce a minimum length and establish a fundamental uncertainty at minimum length (ML) scale. To explore the symmetry of spacetime to such perturbations both in classical and quantum theories, we develop some new tools of stochastic calculus. We derive the generators of rotations and boosts, along with the connection, for stochastically perturbed, minimum length spacetime (“ML spacetime”). We find the metric, the directional derivative, and the canonical commutator preserved. ML spacetime follows the Lie algebra of the Poincare group, now expressed in terms of the two-point functions of the stochastic fields (per Ito’s lemma). With the fundamental uncertainty at ML scale a symmetry of spacetime, we require the translational invariance of any classical theory in classical spacetime to also include the stochastic spacetime perturbations. As an application of these ideas, we consider galaxy rotation curves for massive bodies to find that—under the Robertson–Walker minimum length theory—rotational velocity becomes constant as the distance to the center of the galaxy becomes very large. The new tools of stochastic calculus also set the stage to explore new frontiers at the quantum level. We consider a massless scalar field to derive the Ward-like identity for ML currents.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3