Assessment of CNN-Based Models for Odometry Estimation Methods with LiDAR

Author:

Clavijo MiguelORCID,Jiménez FelipeORCID,Serradilla FranciscoORCID,Díaz-Álvarez AlbertoORCID

Abstract

The problem of simultaneous localization and mapping (SLAM) in mobile robotics currently remains a crucial issue to ensure the safety of autonomous vehicles’ navigation. One approach addressing the SLAM problem and odometry estimation has been through perception sensors, leading to V-SLAM and visual odometry solutions. Furthermore, for these purposes, computer vision approaches are quite widespread, but LiDAR is a more reliable technology for obstacles detection and its application could be broadened. However, in most cases, definitive results are not achieved, or they suffer from a high computational load that limits their operation in real time. Deep Learning techniques have proven their validity in many different fields, one of them being the perception of the environment of autonomous vehicles. This paper proposes an approach to address the estimation of the ego-vehicle positioning from 3D LiDAR data, taking advantage of the capabilities of a system based on Machine Learning models, analyzing possible limitations. Models have been used with two real datasets. Results provide the conclusion that CNN-based odometry could guarantee local consistency, whereas it loses accuracy due to cumulative errors in the evaluation of the global trajectory, so global consistency is not guaranteed.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference29 articles.

1. An Overview to Visual Odometry and Visual SLAM: Applications to Mobile Robotics

2. Visual Odometry on the Mars Exploration Rovers;Cheng;Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics,2005

3. Appearance-Guided Monocular Omnidirectional Visual Odometry for Outdoor Ground Vehicles

4. Low-drift and real-time lidar odometry and mapping

5. IMLS-SLAM: Scan-to-Model Matching Based on 3D Data;Deschaud;Proceedings of the IEEE International Conference on Robotics and Automation,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3