Power-Law Nanofluid Flow over a Stretchable Surface Due to Gyrotactic Microorganisms

Author:

Nabwey Hossam A.ORCID,A. Khan Waqar,Rashad A. M.ORCID,Mabood Fazal,Salah Taha

Abstract

This study aims to learn more about how the flow of a power-law nanofluid’s mixed bio-convective stagnation point flow approaching a stretchable surface behaves with the presence of a passively controlled boundary condition. The governing equations incorporate the motile bacterium and nanoparticles, and the current model includes Brownian motion and thermophoresis effects. The governing equations are transformed into ordinary differential equations, which are then numerically solved using the Runge–KuttaFehlberg (RKF) with the shooting technique. The controlling parameters are chosen as follows: the velocity ratio parameter, ε, is taken between 0.1 and 1.5; the mixed convection parameter, λ, is considered in the range 0–3; the buoyancy ratio parameter is considered in the range between 0.1 and 4; the bio-convection parameter, Rb, is taken in the range 0–1; nanofluid parameters are taken in the range 0.1–0.7; the bioconvection Schmidt number is considered in the range 0.1–3; the Prandtl number is taken between 1–4; and the Schmidt number is taken between 1 and 3. The Nusselt number, skin friction, and nanoparticle volume fraction profiles are shown graphically to observe the impact of several parameters under consideration. Both the Schmidt number and the Brownian motion parameter are shown to significantly increase the Sherwood number. Thermophoresis, however, has been proven to lower the Sherwood number. Furthermore, the bioconvection constant and Peclet number both help to slow down the rate of mass transfer. The presented theoretical investigation has a considerable role in engineering, where nanofluid flow is applied to organize a bioconvection process to develop power generation and mechanical energy. One of the more essential features of bioconvection is the aggregation of nanoparticles with motile microorganisms requested to augment the stability, heat, and mass transmission.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MHD flow of second‐grade fluid containing nanoparticles having gyrotactic microorganisms across heated convective sheet;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2024-08-08

2. Numerical computation for dual stratification of slip flow of sutterby nanofluids with heat generation features;Frontiers in Materials;2023-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3