Affiliation:
1. Silicon Micro/NanoPhotonics Group, Carleton University, Ottawa, ON K1S 5B6, Canada
Abstract
Metalenses are planar optical components that have demonstrated immense potential for integrated optics. In particular, they are capable of high-efficiency subwavelength focusing without the bulkiness of traditional lenses. Dielectric metalenses operating in the C-band typically employ relatively tall, amorphous silicon structures arranged in a periodic array. Phase control spanning from 0 to 2π is accessed by varying the geometry of these scattering structures. The full 2π phase range is necessary to impose a hyperbolic focusing phase profile, but this is difficult to achieve without custom fabrication practices. In this work, we propose a binary phase Fresnel zone plate metalens designed for the standard 500 nm silicon-on-insulator platform. Our design uses subwavelength gratings with trapezoidal segmentation to form concentric rings. The effective index of the grating is set with the duty cycle using a single full-etch step to form the binary phase profile of the zone plate. The metalens design can be easily tuned to achieve longer focal lengths at different wavelengths. It offers a simple platform for high-throughput wavelength-scale focusing elements in free-space optics, including for microscopy and medical imaging.
Funder
Natural Sciences and Engineering Research Council
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献