Predicting Soil Properties and Interpreting Vis-NIR Models from across Continental United States

Author:

Clingensmith Christopher M.,Grunwald SabineORCID

Abstract

The United States NRCS has a soil database that has data collected from across the country over the last several decades. This also includes soil spectral scans. This data is available, but it may not be used to its full potential. For this study, pedon, horizon and spectral data was extracted from the database for samples collected from 2011 to 2015. Only sites that had been fully described and horizons that had been analyzed for the full suite of desired properties were used. This resulted in over 14,000 samples that were used for modeling and eight soil properties: soil organic carbon (SOC); total nitrogen (TN); total sulfur (TS); clay; sand; exchangeable calcium (Caex); cation exchange capacity (CEC); and pH. Four chemometric methods were employed for soil property prediction: partial least squares (PLSR); Random Forest (RF); Cubist; and multivariable adaptive regression splines (MARS). The dataset was sufficiently large that only random subsetting was used to create calibration (70%) and validation (30%) sets. SOC, TN, and TS had the strongest prediction results, with an R2 value of over 0.9. Caex, CEC and pH were predicted moderately well. Clay and sand models had slightly lower performance. Of the four methods, Cubist produced the strongest models, while PLSR produced the weakest. This may be due to the complex relationships between soil properties and spectra that PLSR could not capture. The only drawback of Cubist is the difficult interpretability of variable importance. Future research should include the use of environmental variables to improve prediction results. Future work may also avoid the use of PLSR when dealing with large datasets that cover large areas and have high degrees of variability.

Funder

National Institute for Food and Agriculture, United States Department of Agriculture

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3