Enhancement Effect of Ordered Hierarchical Pore Configuration on SO2 Adsorption and Desorption Process

Author:

Zhu YuwenORCID,Miao Yanfang,Li Haoyu

Abstract

Carbonaceous adsorbents with both high sulfur capacity and easy regeneration are required for flue gas desulfurization. A hierarchical structure is desirable for SO2 removal, since the micropores are beneficial for SO2 adsorption, while the mesopore networks facilitate gas diffusion and end-product H2SO4 storage. Herein, an ordered hierarchical porous carbon was synthesized via a soft-template method and subsequent activation, used in SO2 removal, and compared with coal-based activated carbon, which also had a hierarchical pore configuration. The more detailed, abundant micropores created in CO2 activation, especially the ultramicropores (d < 0.7 nm), are essential in enhancing the SO2 adsorption and the reserves rather than the pore patterns. While O2 and H2O participate in the reaction, the hierarchical porous carbon with ordered mesopores greatly improves SO2 removal dynamics and sulfur capacity, as this interconnecting pore pattern facilitates H2SO4 transport from micropores to mesopores, releasing the SO2 adsorption space. Additionally, the water-washing regeneration performances of the two types of adsorbents were comparatively determined and provide a new insight into the mass-transfer resistance in the pore structure. The ordered hierarchical carbon promoted H2SO4 desorption efficiency and cycled SO2 adsorption–desorption performance, further indicating that interconnecting micro- and mesopores facilitated the diffusion of adsorbates.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3