Economic Feasibility of a Hybrid Microgrid System for a Distributed Substation

Author:

Arunachalam Ramesh Kumar1,Chandrasekaran Kumar2ORCID,Rusu Eugen3ORCID,Ravichandran Nagananthini4ORCID,Fayek Hady H.5ORCID

Affiliation:

1. Principal Engineer-Power Systems, Power Projects, Chennai 600032, India

2. Electrical and Electronics Engineering, M.Kumarasamy College of Engineering, Karur 639113, India

3. Department of Mechanical Engineering, University Dunarea de Jos of Galati, 800008 Galati, Romania

4. Department of Structures for Engineering and Architecture, University of Naples, 80138 Naples, Italy

5. Electromechanics Engineering Department, Faculty of Engineering, Heliopolis University, Cairo 11785, Egypt

Abstract

A hybrid microgrid system is modelled using HOMER-Pro software for real-time load data and available energy sources at Elapakkam village under Ramapuram substation, Kanchipuram, Tamil Nadu, India. Optimization approaches are applied for the selection of rating of the physical components, including solar PV systems, diesel generators, storage batteries, converters, inverters, and economic parameters such as system cost, fuel cost, and cash flow. The daily community load profile for the year 2018 was estimated based on data from TANGEDCO. Accordingly, the total load demand for the village represented 8760 lines of hourly load. The aim of this paper is to select an optimal-sized and reliable hybrid microgrid system to meet the load demands with available energy inputs. However, a comparison based on the cost of energy (COE) and the penetration of renewable energy is carried out for different case studies in the village with the economic-feasibility analysis of various countries. From this analysis, emissions cannot be completely avoided, they could be minimized by combining existing systems with renewable energy systems.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3