Characterization of Urban Heat Islands Using City Lights: Insights from MODIS and VIIRS DNB Observations

Author:

Song Jingjing,Wang JunORCID,Xia XiangaoORCID,Lin Runsheng,Wang YiORCID,Zhou Meng,Fu DisongORCID

Abstract

An urban heat island (UHI) is a phenomenon whereby the temperature in an urban area is significantly warmer than it a rural area. To further advance the characterization and understanding of UHIs within urban areas, nighttime light measured by the Day/Night Band (DNB) onboard the Visible Infrared Imaging Radiometer Suite (VIIRS) and the land surface temperature (LST) data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) combined with principal component analysis (PCA) are used here. Beijing (highly developed) and Pyongyang (less developed) are selected as the two case studies. Linear correlation analysis is first used, with higher correlations being found between DNB and LST data at nighttime than between population and LST data for both cities, although none of the correlation coefficients are particularly high because of noise. Principal component analysis (PCA), a method that can remove random noise, is used to extract more useful information. Two types of PCA are conducted, focusing on spatial (S) and temporal (T) patterns. The results of the S-mode PCA reveal that the typical temporal variation is a seasonal cycle for both LST and DNB data in Beijing and Pyongyang. Furthermore, there are monthly cycles for DNB data related to the moon phase in two cities. The T-mode PCA results show important spatial information, while the spatial pattern of the first mode explains over 50% of the variation. This study is among the first to demonstrate the advantages of using urban light to study the spatial variation of urban heat, especially for nighttime urban temperatures measured from space, at the street and neighborhood scales.

Funder

Opening Research of Key Laboratory of Middle Atmosphere and Global environment Observation (LAGEO), Institute of Atmospheric Physics

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3