Evaluation of Soil Properties, Topographic Metrics, Plant Height, and Unmanned Aerial Vehicle Multispectral Imagery Using Machine Learning Methods to Estimate Canopy Nitrogen Weight in Corn

Author:

Yu JodyORCID,Wang JinfeiORCID,Leblon Brigitte

Abstract

Management of nitrogen (N) fertilizers is an important agricultural practice and field of research to minimize environmental impacts and the cost of production. To apply N fertilizer at the right rate, time, and place depends on the crop type, desired yield, and field conditions. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery, vegetation indices (VI), crop height, field topographic metrics, and soil properties to predict canopy nitrogen weight (g/m2) of a corn field in southwestern Ontario, Canada. Random Forests (RF) and support vector regression (SVR) models were evaluated for canopy nitrogen weight prediction from 29 variables. RF consistently had better performance than SVR, and the top-performing validation model was RF using 15 selected height, spectral, and topographic variables with an R2 of 0.73 and Root Mean Square Error (RMSE) of 2.21 g/m2. Of the model’s 15 variables, crop height was the most important predictor, followed by 10 VIs, three MicaSense band reflectance mosaics (blue, red, and green), and topographic profile curvature. The model information can be used to improve field nitrogen prediction, leading to more effective and efficient N fertilizer management.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3