Abstract
This study considered the impacts of diesel–soybean biodiesel blends mixed with 3% cerium coated zinc oxide (Ce-ZnO) nanoparticles on the performance, emission, and combustion characteristics of a single cylinder diesel engine. The fuel blends were prepared using 25% soybean biodiesel in diesel (SBME25). Ce-ZnO nanoparticle additives were blended with SBME25 at 25, 50, and 75 ppm using the ultrasonication process with a surfactant (Span 80) at 2 vol.% to enhance the stability of the blend. A variable compression ratio engine operated at a 19.5:1 compression ratio (CR) using these blends resulted in an improvement in overall engine characteristics. With 50 ppm Ce-ZnO nanoparticle additive in SBME25 (SBME25Ce-ZnO50), the brake thermal efficiency (BTE) and heat release rate (HRR) increased by 20.66% and 18.1%, respectively; brake specific fuel consumption (BSFC) by 21.81%; and the CO, smoke, and hydrocarbon (HC) decreased by 30%, 18.7%, and 21.5%, respectively, compared to SBME25 fuel operation. However, the oxides of nitrogen slightly rose for all the nanoparticle added blends. As such, 50 ppm of Ce-ZnO nanoparticle in the blend is a potent choice for the enhancement of engine performance, combustion, and emission characteristics.
Funder
Deanship of Scientific Research, King Saud University
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献