Exploring Divergent Patterns and Dynamics of Urban and Active Rural Developments—A Case Study of Dezhou City

Author:

Zhong Huimin12,Liu Zhengjia12ORCID,Huang Yihang12

Affiliation:

1. Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Clarifying urban-rural spatial explicit structure changes is of great significance for understanding the urban-rural relationship evolution. Previous studies have mostly focused on urban internal spatial structure evolutions and less on the regional scale when it comes to exploring urban and rural evolutions. Nighttime light can timely reflect the human activities in regions and provides great potential for investigating the evolutions of urban and rural spatial explicit structures. Here, taking Dezhou City, a rapidly urbanizing city in China, as a case study, we employed the local contour tree method and nighttime light data to map urban and active rural extents from 2012 to 2020 and further explored their respective development processes. This study showed that unlike in rural regions, the internally explicit structures of urban regions were more complex, and there were often multiple hotspots inside them. The area of the urban-rural region increased significantly by 39.3% from 2012 to 2020 (p < 0.05). Populations were greatly responsible for the spatial explicit structure changes of urban and active rural regions. The urban and rural region rankings of the identified counties were basically consistent with the urban and rural population rankings. Unlike the perspectives of earlier land use (i.e., built-up land or impervious surface), this study underlined urban and active rural regions in view of the scope of active human activities. These results can likely help policymakers understand current active human activity extents and provide a data-based reference for future public services and infrastructure planning.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3