Numerical Prediction of Background Buildup of Salinity Due to Desalination Brine Discharges into the Northern Arabian Gulf

Author:

Chow Aaron C.,Verbruggen Wilbert,Morelissen Robin,Al-Osairi Yousef,Ponnumani Poornima,Lababidi Haitham M. S.ORCID,Al-Anzi Bader,Adams E. EricORCID

Abstract

Brine discharges from desalination plants into low-flushing water bodies are challenging from the point of view of dilution, because of the possibility of background buildup effects that decrease the overall achievable dilution. To illustrate the background buildup effect, this paper uses the Arabian (Persian) Gulf, a shallow, reverse tidal estuary with only one outlet available for exchange flow. While desalination does not significantly affect the long-term average Gulf-wide salinity, due to the mitigating effect of the Indian Ocean Surface Water inflow, its resulting elevated salinities, as well as elevated concentrations of possible contaminants (such as heavy metals and organophosphates), can affect marine environments on a local and regional scale. To analyze the potential effect of background salinity buildup on dilutions achievable from discharge locations in the northern Gulf, a 3-dimensional hydrodynamic model (Delft3D) was used to simulate brine discharges from a single hypothetical source location along the Kuwaiti shoreline, about 900 km from the Strait of Hormuz. Using nested grids with a horizontal resolution, comparable to a local tidal excursion (250 m), far field dilutions of about 28 were computed for this discharge location. With this far field dilution, to achieve a total dilution of 20, the near field dilution (achievable using a submerged diffuser) would need to be increased to approximately 70. Conversely, the background build-up means that a near field dilution of 20 yields a total dilution of only about 12.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3