Three-Dimensional Distribution and Transport Features of Dust and Polluted Dust over China and Surrounding Areas from CALIPSO

Author:

Xu Xiaofeng1,Yang Yudi1,Xiong Zixu1,Gong Jianming1,Luo Tianyang1

Affiliation:

1. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Dust plays a very important role in the Earth’s climate system by its direct and indirect effects. Deserts in northwestern China contribute a large amount of dust particles, both inland and outside, while the vertical distribution and transport mechanism of dust still have many uncertainties. Using Level 3 cloud-free monthly aerosol products of the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) system from 2007 to 2020, we analyzed the spatial and temporal variations and transport features for dust and polluted dust aerosols over China and the surrounding areas. The results show that the Taklimakan Desert (TD) and the Thar Desert (TRD) always act as the high-value centers of dust optical depth (DOD), while the centers of polluted dust optical depth (PDOD) are located in eastern China, the Sichuan Basin and the Indian subcontinent. The DOD shows an increasing trend in most areas, while the PDOD presents a significant decrease and increase in eastern China and central India, respectively. The largest DOD appears in spring over the TD and the Gobi Desert (GD), while the largest DOD in summer is over the TRD. Although most dusts in the TD and TRD are concentrated below 4 km, they may be higher over the TD. Most of the polluted dusts are confined to under 2 km. The dust input to the Tibetan Plateau (TP) could come from both the TD and TRD and occurs mostly in spring and summer, respectively. The polluted dusts of South Asia and the Indian subcontinent are mostly contained in the boundary layer in winter, but they could extend much higher in spring and summer, which favors their transport into southwestern China. The dust layer shows apparent seasonality. Its top reaches a higher level in spring and summer, while the base stays at a similar height in all seasons. The dust layer appears to be the thickest in spring over most areas, while the thickest layer in summer is over the TD and TRD. The polluted dust layer is thickest in the Indian subcontinent in spring. The overlapping of dust and polluted dust layers present different patterns in different regions, which suggests diverse mixture processes of dusts and pollutants. Finally, we compared and found different influences of meteorological factors, such as wind field, boundary layer height and precipitation, on the variations in DOD and PDOD over dust sources and other areas.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3