Investigation of Appropriate Scaling of Networks and Images for Convolutional Neural Network-Based Nerve Detection in Ultrasound-Guided Nerve Blocks

Author:

Sugino Takaaki1ORCID,Onogi Shinya1ORCID,Oishi Rieko2,Hanayama Chie2,Inoue Satoki2ORCID,Ishida Shinjiro3,Yao Yuhang4,Ogasawara Nobuhiro3,Murakawa Masahiro2,Nakajima Yoshikazu1ORCID

Affiliation:

1. Department of Biomedical Informatics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan

2. Department of Anesthesiology, Fukushima Medical University, Fukushima 960-1295, Japan

3. TCC Media Lab Co., Ltd., Tokyo 192-0152, Japan

4. IOT SOFT Co., Ltd., Tokyo 103-0023, Japan

Abstract

Ultrasound imaging is an essential tool in anesthesiology, particularly for ultrasound-guided peripheral nerve blocks (US-PNBs). However, challenges such as speckle noise, acoustic shadows, and variability in nerve appearance complicate the accurate localization of nerve tissues. To address this issue, this study introduces a deep convolutional neural network (DCNN), specifically Scaled-YOLOv4, and investigates an appropriate network model and input image scaling for nerve detection on ultrasound images. Utilizing two datasets, a public dataset and an original dataset, we evaluated the effects of model scale and input image size on detection performance. Our findings reveal that smaller input images and larger model scales significantly improve detection accuracy. The optimal configuration of model size and input image size not only achieved high detection accuracy but also demonstrated real-time processing capabilities.

Funder

Japan Society for the Promotion of Science KAKENHI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3