Exploring and Identifying Prognostic Phenotypes of Patients with Heart Failure Guided by Explainable Machine Learning

Author:

Zhou Xue,Nakamura KeijiroORCID,Sahara NaohikoORCID,Asami Masako,Toyoda Yasutake,Enomoto Yoshinari,Hara Hidehiko,Noro Mahito,Sugi Kaoru,Moroi Masao,Nakamura MasatoORCID,Huang Ming,Zhu XinORCID

Abstract

Identifying patient prognostic phenotypes facilitates precision medicine. This study aimed to explore phenotypes of patients with heart failure (HF) corresponding to prognostic condition (risk of mortality) and identify the phenotype of new patients by machine learning (ML). A unsupervised ML was applied to explore phenotypes of patients in a derivation dataset (n = 562) based on their medical records. Thereafter, supervised ML models were trained on the derivation dataset to classify these identified phenotypes. Then, the trained classifiers were further validated on an independent validation dataset (n = 168). Finally, Shapley additive explanations were used to interpret decision making of phenotype classification. Three patient phenotypes corresponding to stratified mortality risk (high, low, and intermediate) were identified. Kaplan–Meier survival curves among the three phenotypes had significant difference (pairwise comparison p < 0.05). Hazard ratio of all-cause mortality between patients in phenotype 1 (n = 91; high risk) and phenotype 3 (n = 329; intermediate risk) was 2.08 (95%CI 1.29–3.37, p = 0.003), and 0.26 (95%CI 0.11–0.61, p = 0.002) between phenotype 2 (n = 142; low risk) and phenotype 3. For phenotypes classification by random forest, AUCs of phenotypes 1, 2, and 3 were 0.736 ± 0.038, 0.815 ± 0.035, and 0.721 ± 0.03, respectively, slightly better than the decision tree. Then, the classifier effectively identified the phenotypes for new patients in the validation dataset with significant difference on survival curves and hazard ratios. Finally, age and creatinine clearance rate were identified as the top two most important predictors. ML could effectively identify patient prognostic phenotypes, facilitating reasonable management and treatment considering prognostic condition.

Funder

Japan Society for the Promotion of Science

The University of Aizu

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3