Biofilm Production by Critical Antibiotic-Resistant Pathogens from an Equine Wound

Author:

Afonso Ana C.123ORCID,Sousa Mariana12,Pinto Ana Rita3,Cotovio Mário45ORCID,Simões Manuel12ORCID,Saavedra Maria José345ORCID

Affiliation:

1. LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal

2. ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

3. CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences and Inov4Agro, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal

4. Department of Veterinary Sciences-Antimicrobials, Biocides & Biofilms Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal

5. CECAV-Veterinary and Animal Research Centre and Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal

Abstract

As in human medicine, in veterinary medicine, chronic wounds are often related to polymicrobial infections and the presence of a biofilm, which compromises the effectiveness of therapeutic approaches. In this study, a Lusitano mare presented a 21-day-old chronic wound that was only being treated with an antiseptic. A swab sample was collected, and three isolates of Staphylococcus aureus and one of Pseudomonas aeruginosa were isolated. S. aureus did not show resistance to a panel of antibiotics. However, the P. aeruginosa isolate showed a resistance profile to carbapenems and fluoroquinolones, which may suggest a cross-resistance between antiseptic and antibiotics, given that no antibiotic therapy was applied to the wound or the mare in the previous year. Further experiments were conducted to assess the ability of the isolates to form biofilms, and to ascertain their susceptibility to gentamicin. The results demonstrated that the isolates produced biofilms. Gentamicin at the minimum inhibitory concentration (MIC) and 10× MIC caused biofilm removal between 59.3% and 85.7%, with the highest removal percentage being obtained for the P. aeruginosa isolate (at 10× MIC concentration). This study reveals that an equine wound was colonized by antibiotic resistant bacteria, and that all the wound colonizers could form biofilms, demonstrating the relevance of an adequate diagnosis and treatment when there is a suspicion of a biofilm-infected wound. It also highlights the possibility of resistance transmission between animals, animals and humans, or animals and the environment.

Funder

CITAB

CECAV

Inov4Agro

AL4AnimalS

national funds

FEDER funds

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3