Systems Biology Approach for Personalized Hemostasis Correction

Author:

Pisaryuk Alexandra S.ORCID,Povalyaev Nikita M.,Poletaev Alexander V.,Shibeko Alexey M.ORCID

Abstract

The correction of blood coagulation impairments of a bleeding or thrombotic nature employs standard protocols where the type of drug, its dose and the administration regime are stated. However, for a group of patients, such an approach may be ineffective, and personalized therapy adjustment is needed. Laboratory hemostasis tests are used to control the efficacy of therapy, which is expensive and time-consuming. Computer simulations may become an inexpensive and fast alternative to real blood tests. In this work, we propose a procedure to numerically define the individual hemostasis profile of a patient and estimate the anticoagulant efficacy of low-molecular-weight heparin (LMWH) based on the computer simulation of global hemostasis assays. We enrolled a group of 12 patients receiving LMWH therapy and performed routine coagulation assays (activated partial thromboplastin time and prothrombin time) and global hemostasis assays (thrombodynamics and thrombodynamics-4d) and measured anti-Xa activity, fibrinogen, prothrombin and antithrombin levels, creatinine clearance, lipid profiles and clinical blood counts. Blood samples were acquired 3, 6 and 12 h after LMWH administration. We developed a personalized pharmacokinetic model of LMWH and coupled it with the mechanism-driven blood coagulation model, which described the spatial dynamics of fibrin and thrombin propagation. We found that LMWH clearance was significantly lower in the group with high total cholesterol levels. We generated an individual patient’s hemostasis profile based on the results of routine coagulation assays. We propose a method to simulate the results of global hemostasis assays in the case of an individual response to LMWH therapy, which can potentially help with hemostasis corrections based on the output of global tests.

Funder

Ministry of education and science of Russia

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Reference53 articles.

1. The role of serine proteases in the blood coagulation cascade;Adv. Enzymol. Relat. Areas Mol. Biol.,2006

2. Membrane and lipid involvement in blood coagulation;Biochim. Biophys. Acta (BBA) Rev. Biomembr.,1978

3. The coagulation cascade: Initiation, maintenance, and regulation;Biochemistry,1991

4. Cancer and Venous Thromboembolic Disease: A Review;Oncologist,2017

5. Thrombosis in Autoimmune Diseases: A Role for Immunosuppressive Treatments?;Semin. Thromb. Hemost.,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Personalized Treatments Based on Laryngopharyngeal Reflux Patient Profiles: A Narrative Review;Journal of Personalized Medicine;2023-10-31

2. Critical evaluation of kinetic schemes for coagulation;PLOS ONE;2023-08-28

3. From Mechanistic Biomedicine to Organismal Systems Medicine;ArtefaCToS. Revista de estudios sobre la ciencia y la tecnología;2023-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3