Methacrylated Cartilage ECM-Based Hydrogels as Injectables and Bioinks for Cartilage Tissue Engineering

Author:

Behan KevinORCID,Dufour AlexandreORCID,Garcia Orquidea,Kelly Daniel

Abstract

Articular cartilage (AC) possesses a limited healing potential, meaning that untreated focal joint defects typically progress, leading to the development of degenerative diseases such as osteoarthritis. Several clinical strategies exist that aim to regenerate AC; however, recapitulation of a fully functional, load-bearing tissue remains a significant challenge. This can be attributed, at least in part, to a paucity of biomaterials that truly mimic the native tissue and provide appropriate cues to direct its regeneration. The main structural component of articular cartilage, type II collagen, does not readily gelate at body temperature, challenging the development of cartilage extracellular matrix (cECM)-derived injectable hydrogels and bioinks for AC tissue engineering and bioprinting applications. Here, we describe the development and rheological characterisation of a methacrylated cartilage ECM-based hydrogel/bioink (cECM-MA), which could be photocrosslinked when exposed to ultraviolet (UV) light. Functionalisation of the collagen backbone with methacryloyl groups had a negligible effect on triple helix stability, as demonstrated by circular dichroism spectroscopy. These cECM-MA bioinks demonstrated shear-thinning properties and could be loaded with bone marrow mesenchymal stem cells (BM-MSCs), micro-extruded to generate self-supporting 3D constructs of predefined size and shape, and then photocrosslinked using UV light. Analysis of the cell-laden constructs showed that the BM-MSCs were viable post-printing and underwent chondrogenesis in vitro, generating a tissue rich in sulphated glycosaminoglycans and collagens. These results support the use of methacrylated, tissue-specific ECM-derived hydrogels as bioinks for 3D bioprinting and/or as injectables for cartilage tissue engineering applications.

Funder

Science Foundation Ireland

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3