Carbon Deposition Characteristics in Thermal Conversion of Methane for Sustainable Fuel

Author:

Zhang Xiaorong1ORCID,Wang Jie2,Song Zhanlong1,Pang Yingping1

Affiliation:

1. National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China

2. College of Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng 048000, China

Abstract

Low-carbon powertrains and sustainable fuels are closely linked as they both aim to reduce carbon emissions and transition away from reliance on fossil fuels. The methane from biogas, biomass, and organic waste can serve as an alternative energy source to traditional fossil fuels. The process of obtaining sustainable fuel (e.g., hydrogen and syngas) from methane is commonly confronted with the problems of carbon deposition on metal oxide. The study of carbon deposition characteristics during methane thermal conversion processes is particularly crucial for low-carbon powertrains. Herein, the carbon deposition on CoAl2O4 and strongly alkali-etched CoAl2O4 (CoAlvO4) spinel oxides from the CH4 stage was investigated. We demonstrate that reaction time, calcination temperature, and reaction temperature have no effect on the compositions of carbon deposition, and the material itself plays a crucial role in carbon deposition. The graphitization degree for CoAlvO4 is lower than that for CoAl2O4. The strong alkali etching in CoAl2O4 only affects contents in different composition carbon deposition. This is mainly attributed to the introduction of Al3+ vacancies by alkali etching, which efficiently tunes the surface electronic structure in CoAl2O4. These findings guide designing efficient and clean low-carbon powertrains, especially in the development of removal carbon deposition technologies and catalysts.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Postdoctoral Innovation Project of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3