A Novel Method for Preparing Lightweight and High-Strength Ceramisite Coarse Aggregates from Solid Waste Materials

Author:

Xiong Xin1,Wu Zhi1,Jiang Pengcheng1,Lai Min1,Cheng Guanghai1

Affiliation:

1. School of Materials Science and Engineering, Hunan Institute of Technology, No. 18 Henghua Road, Hengyang 421002, China

Abstract

A novel method is introduced in this study for producing ceramisite coarse aggregates that are both lightweight and possess high strength. The process involves utilizing fly ash as the primary material, along with coal ash floating beads (CAFBs) that have high softening temperature and a spherical hollow structure serving as the template for forming pores. This study examined the impact of varying particle size and quantity of floating beads on the composition and characteristics of ceramisite aggregates. Results showed that the high softening temperature of floating beads provided stability to the spherical cavity structure throughout the sintering process. Furthermore, the pore structure could be effectively tailored by manipulating the size and quantity of the floating beads in the manufacturing procedure. The obtained ceramisite aggregates feature a compact outer shell and a cellular inner core with uniformly distributed pores that are isolated from each other and mostly spherical in form. They achieve a low density ranging from 723 to 855 kg/m3, a high cylinder compressive strength between 8.7 and 13.5 MPa, and minimal water absorption rates of 3.00 to 4.09%. The performance metrics of these coarse aggregates significantly exceeded the parameters specified in GB/T 17431.1-2010 standards.

Funder

Natural Science Foundation of Hunan Province

Scientific Research Fund of Hunan Provincial Education Department

characteristic application discipline of material science engineering in Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3