Influence of Pre- and Post-Contouring Strategies to Downskin Sloped Surfaces in Laser Powder-Bed Fusion (L-PBF) Additive Manufacturing

Author:

Valiyakath Vadakkan Habeeb Nismath1ORCID,Islam Rabiul1,Chou Kevin1

Affiliation:

1. Department of Industrial Engineering, University of Louisville, Louisville, KY 40292, USA

Abstract

Among various metal additive manufacturing (AM) technologies, L-PBF is known for fabricating intricate components. However, due to step edges and powder particle attachments, attaining a good surface finish is challenging, especially on downskin surfaces. Contour scanning has potential to improve surface quality because such scanning may dominate the surface formation of sloped features. This study evaluates the effects of pre- and post-contouring strategies on the sloped downskin surfaces fabricated using a commercial L-PBF system with Ti6Al4V powder. L-PBF parts printed at inclination angles 30°, 45° and 60° were investigated. A double-contouring approach with varying processing conditions was employed and surface characteristics were analyzed using data acquired by white light interferometry. The average surface roughness, Sa, surface skewness, Ssk, and percentage area of powder particles attached onto surfaces were statistically evaluated. The lowest Sa obtained for pre- and post-contoured samples is 14.08 µm and 18.88 µm, respectively. For both strategies, the combination of a low laser power and a high scan speed on the interface of downskin surface and underneath powder results in smoother surfaces. However, while comparing both strategies, pre-contouring gives better surface finish for samples built at similar processing conditions, with a difference of nearly 5 µm in Sa.

Funder

Technical Data Analysis, Inc.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3