Improvement in Mechanical and Thermal Properties of Graphite Flake/Cu Composites by Introducing TiC Coating on Graphite Flake Surface

Author:

Zhang Ren,He Xinbo,Liu Qian,Qu XuanhuiORCID

Abstract

In this work, TiC coating was successfully deposited on a graphite flake surface via molten salt technique, for the purpose of promoting the interfacial connection between Cu and graphite flake. Vacuum hot pressing was then employed to prepare TiC-coated graphite flake/Cu composite. The results indicate that introducing TiC coating on graphite flake surface can evidently reduce the pores and gaps at the interface, resulting in a significant improvement on the bending strength. When the TiC-coated graphite flake content is 60 vol%, the bending strength is increased by 58% compared with the uncoated one. The coefficient of thermal expansion dropped from 6.0 ppm·K−1 to 4.4 ppm·K−1, with the corresponding thermal conductivity as high as 571 W·m−1·K−1. The outstanding thermal conductivity, apposite coefficient of thermal expansion, as well as superior processability, make TiC-coated graphite flake/Cu composite a satisfactory electronic packaging material with vast prospect utilized in microelectronic industry.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3