Self-Calibration and Performance Control of MEMS with Applications for IoT

Author:

Clark Jason

Abstract

A systemic problem for microelectromechanical systems (MEMS) has been the large gap between their predicted and actual performances. Due to process variations, no two MEMS have been able to perform identically. In-factory calibration is often required, which can represent as much as three-fourths of the manufacturing costs. Such issues are challenges for microsensors that require higher accuracy and lower cost. Towards addressing these issues, this paper describes how microscale attributes may be used to enable MEMS to accurately calibrate themselves without external references, or enable actual devices to match their predicted performances. Previously, we validated how MEMS with comb drives can be used to autonomously self-measure their change in geometry in going from layout to manufactured, and we verified how MEMS can be made to increase or decrease their effective mass, damping, and or stiffness in real-time to match desired specifications. Here, we present how self-calibration and performance control may be used to accurately sense and extend the capabilities of a variety of sensing applications for the Internet of things (IoT). Discussions of IoT applications include: (1) measuring absolute temperature due to thermally-induced vibrations; (2) measuring the stiffness of atomic force microscope or biosensor cantilevers; (3) MEMS weighing scales; (4) MEMS gravimeters and altimeters; (5) inertial measurement units that can measure all four non-inertial forces; (6) self-calibrating implantable pressure sensors; (7) diagnostic chips for quality control; (8) closing the gap from experiment to simulation; (9) control of the value of resonance frequency to counter drift or to match modes; (10) control of the value of the quality factor; and (11) low-amplitude Duffing nonlinearity for wideband high-Q resonance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

1. Searching for the IoT Resources: Fundamentals, Requirements, Comprehensive Review, and Future Directions

2. Enabling the Internet of Things

3. International Technology Roadmap for Semiconductors Micro-Electro-Mechanical Systems http://www.itrs2.net/itrs-reports.html

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Method of Precise Auto-Calibration in a Micro-Electro-Mechanical System Accelerometer;Sensors;2024-06-20

2. Artificial Intelligence;Handbook of Metrology and Applications;2023

3. Review of new developments in different types of sensors over the past 15 years;Reference Module in Materials Science and Materials Engineering;2023

4. Calibration approach to quantify nonlinearity of MEMS pore pressure sensors using optimal interpolation;Measurement Science and Technology;2022-11-17

5. Artificial Intelligence;Handbook of Metrology and Applications;2022-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3