Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling

Author:

Cervantes María José1,Basiuk Lucas O.12,González-Suárez Ana34ORCID,Carlevaro C. Manuel12ORCID,Irastorza Ramiro M.12ORCID

Affiliation:

1. Instituto de Física de Líquidos y Sistemas Biológicos, CONICET La Plata, La Plata B1900BTE, Argentina

2. Grupo de Materiales Granulares, Departamento de Ingeniería Mecánica, UTN FRLP, La Plata 1900, Argentina

3. Translational Medical Device Lab, School of Engineering, University of Galway, H91 TK33 Galway, Ireland

4. Valencian International University, 46002 Valencia, Spain

Abstract

Background: The electrical conductivity of trabecular bone at 100 kHz has recently been reported as a good predictor of bone volume fraction. However, quantifying its relationship with free water (or physiological solution) content and the conductivities of its constituents is still difficult. Methods: In this contribution, in silico models inspired by microCT images of trabecular bovine samples were used to build realistic geometries. The finite element method was applied to solve the electrical problem and to robustly fit the conductivity of the constituents to the literature data. The obtained effective electrical conductivity was compared with the Bruggeman three-medium mixture model using a physiological solution, bone marrow and a bone matrix. Results: The values for the physiological solution plus bone marrow (together as one material) and the bone matrix that best captured the bone volume fraction in the two-medium finite element model were σps+bm = 298.4 mS/m and σb = 21.0 mS/m, respectively. Additionally, relatively good results were obtained with the three-medium Bruggeman mixture model, with σbm= 103 mS/m, σb= 21.0 mS/m and σps= 1200 mS/m. Simple linear relationships between the proportions of constituents depending on bone volume fraction were tested. Degree of anisotropy and fractal dimension do not show detectable changes in effective conductivity. Conclusions: These results provided some useful findings for simulation purposes. First, a higher value for the electrical conductivity of bone marrow has to be used in order to obtain similar values to those of experimental published data. Second, anisotropy is not detectable with conductivity measurements for small trabecular samples (5 mm cube). Finally, the simulations presented here showed relatively good fitting of the Bruggeman mixture model, which would potentially account for the free water content and could rescale the model for whole-bone electrical simulations.

Funder

Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico

CONICET

Spanish Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3