Electrolysis of Bacteria Based on Microfluidic Technology

Author:

Zhao Jianqiu,Li Na,Zhou Xinyu,Yu Zihan,Lan Mei,Chen Siyu,Miao Jiajia,Li Yulai,Li Guiying,Yang Fang

Abstract

Cell lysis is a key step for studying the structure and function of proteins in cells and an important intermediate step in drug screening, cancer diagnosis, and genome analysis. The current cell lysis methods still suffer from limitations, such as the need for large instruments, a long and time-consuming process, a large sample volume, chemical reagent contamination, and their unsuitability for the small amount of bacteria lysis required for point-of-care testing (POCT) devices. Therefore, a fast, chemical-free, portable, and non-invasive device needs to be developed. In the present study, we designed an integrated microfluidic chip to achieve E. coli lysis by applying an alternating current (AC) electric field and investigated the effects of voltage, frequency, and flow rate on the lysis. The results showed that the lysis efficiency of the bacteria was increased with a higher voltage, lower frequency, and lower flow rate. When the voltage was at 10 Vp-p, the lysis efficiency was close to 100%. The study provided a simple, rapid, reagent-free, and high-efficiency cleavage method for biology and biomedical applications involving bacteria lysis.

Funder

Interdisciplinary Integration Innovation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3