An Investigation into the Effects of Electric Field Uniformity on Electrospun TPU Fiber Nano-Scale Morphology

Author:

Morehouse Aaron,Ireland Kelton C.,Saha Gobinda C.ORCID

Abstract

ANSYS Maxwell was used to replicate the conditions of two potential electrospinning configurations: a needle–plate and a parallel-plate configuration. Simulations showed that the electric field generated within the parallel-plate configuration was much more uniform than that within the needle–plate configuration. Both configurations were assembled and used electrospin fibers at three different spinning distances (10 cm, 12 cm, and 15 cm), at a consistent electric field strength of 1.7 kV/cm. Scanning electron microscopy was used to compare the morphologies of the fibers produced in both configurations in order to confirm whether a more uniform electric field yielded thinner fibers. The results show that the needle–plate configuration produced finer fibers than the parallel-plate configuration at all three spinning distances. However, there was no difference in the fiber diameters produced at the 12 and 15 cm spinning distances within the needle–plate configuration, implying thinning may only occur up to a certain distance in this configuration.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference25 articles.

1. Fiber diameter control in electrospinning;Stepanyan;Appl. Phys. Lett.,2014

2. A review on electrospinning design and nanofibre assemblies;Teo;Nanotechnology,2006

3. Electrospinning of nanofibers;Subbiah;J. Appl. Polym. Sci.,2005

4. Effects of Solvent Mixtures on the Morphology of Electrospun Thermoplastic Polyurethane Nanofibres;Kari;Tekst. Konfeksiyon,2015

5. Effect of electric field on the morphology and mechanical properties of electrospun fibers;Li;RSC Adv.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3