In Situ Observation of Microstructural and Inclusions Evolution in High-Strength Steel Deposited Metals with Various Rare Earth Pr Contents

Author:

Zhang Tianli,Wang Weiguang,Ma Yiming,Fang Naiwen,Lin SanbaoORCID,Li Zhuoxin,Kou Sindo

Abstract

The evolution of austenite, acicular ferrite, upper bainite and martensite, and the nucleation of inclusions in the microstructure of high-strength steel deposited metals, was systematically investigated using three kinds of A5.28 E120C-K4 metal-cored wires with various rare earth Pr contents. Grain structure evolution in the process of high temperature, dispersoid characteristics of inclusions and the crystallographic characteristics of the microstructure were assessed. Compared with no addition of Pr6O11, adding 1%Pr6O11 resulted in refined, spheroidized and dispersed inclusions in the deposited metal, leading to an increase in the pinning forces on the grain boundary movement, promoting the formation of an ultra-fine grain structure with an average diameter of 41 μm. The inclusions in the deposited metals were Mn-Si-Pr-Al-Ti-O after Pr addition; the average size of the inclusions in the Pr-containing deposited metals was the smallest, while the number and density of inclusions was the highest. The size of effective inclusions (nucleus of acicular ferrite formation) was mainly in the range of 0.6–1.5 μm. In addition, the content of upper bainite decreased, while the percentage of acicular ferrite increased by 24% due to the increase in the number of effective inclusions in the Pr-containing deposited metals in this study. This study shows that the addition of 1% Pr6O11 is efficient in achieving fine interlaced multiphase with an ultrafine-grained structure, resulting in an enhancement of the impact toughness of the deposited metal.

Funder

National Natural Science Foundation of China

Harbin Institute of Technology

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3