A Practical Remote Sensing Monitoring Framework for Late Frost Damage in Wine Grapes Using Multi-Source Satellite Data

Author:

Li Wenjie,Huang JingfengORCID,Yang LingboORCID,Chen Yan,Fang Yahua,Jin Hongwei,Sun Han,Huang RanORCID

Abstract

Late frost damage is one of the main meteorological disasters that affect the growth of wine grapes in spring, causing a decline in wine grapes quality and a reduction in yield in Northwest China. At present, remote sensing technology has been widely used in the field of crop meteorological disasters monitoring and loss assessments, but little research has been carried out on late frost damage in wine grapes. To monitor the impact of late frost in wine grapes accurately and quickly, in this research, we selected the Ningxia planting area as the study area. A practical framework of late frost damage on wine grapes by integrating visible, near-infrared, and thermal infrared satellite data is proposed. This framework includes: (1) Wine grape planting area extraction using Gaofen-1 (GF-1), Landsat-8, and Sentinel-2 based on optimal feature selection and Random Forest (RF) algorithm; (2) retrieval of the land surface temperature (LST) using Landsat-8 thermal infrared data; (3) data fusion using Landsat-8 LST and MODIS LST for a high spatiotemporal resolution of LST with the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM); (4) the estimation of daily minimum air temperature (Tmin) using downscaled LST and meteorological station data; (5) monitoring and evaluation of the degree of late frost damage in wine grapes in April 2020 by combining satellite-derived data and late frost indicators. The results show that the total area of wine grapes extracted in Ningxia was about 39,837 ha. The overall accuracy was 90.47%, the producer’s accuracy was 91.09%, and the user’s accuracy was 90.22%. The root mean square (RMSE) and the coefficient of determination (R2) of the Tmin estimation model were 1.67 ℃ and 0.91, respectively. About 41.12% of the vineyards suffered severe late frost damage, and the total affected area was about 16,381 ha during April 20–25, 2020. This suggests the satellite data can accurately monitor late frost damage in wine grapes by mapping the wine grape area and estimating Tmin. The results can help farmers to take remedial measures to reduce late frost damage in wine grapes, and provide an objective evaluation of late frost damage insurance claims for wine grapes. With the increasing weather extremes, this study has an important reference value for standardized global wine grape management and food security planning.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference78 articles.

1. Climatic regionalization of wine grape in north China;Zhang;Arid Land Geogr.,2008

2. Winter freezing damage index and its effect on wine grapes in eastern part of helan mountain of ningxia;Wang;J. Agric. Sci. Technol.,2019

3. Low temperature duration pattern in late frost period in wine grape growing area in eastern helan mountain;Yang;J. Gansu Agric. Univ.,2019

4. Research Progress of Wine Grape Frost Injuries;Duan;J. Shanxi Agric. Sci.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3