Modeling the Impacts of City-Scale “Ventilation Corridor” Plans on Human Exposure to Intra-Urban PM2.5 Concentrations

Author:

Liu Chao,Shu QianORCID,Huang Sen,Guo Jingwei

Abstract

Increasingly, Chinese cities are proposing city-scale ventilation corridors (VCs) to strengthen wind velocities and decrease pollution concentrations, although their influences are ambiguous. To assess VC impacts, an effort has been made to predict the impact of VC solutions in the high density and diverse land use of the coastal city of Shanghai, China, in this paper. One base scenario and three VC scenarios, with various VC widths, locations, and densities, were first created. Then, the combination of the Weather Research and Forecasting/Single-Layer Urban Canopy Model (WRFv.3.4/UCM) and Community Multiscale Air Quality (CMAQv.5.0.1) numerical simulation models were employed to comprehensively evaluate the impacts of urban spatial form and VC plans on PM2.5 concentrations. The modeling results indicated that concentrations increased within the VCs in both summer and winter, and the upwind concentration decreased in winter. These counter-intuitive results could be explained by decreased planetary boundary layer (PBL), roughness height, deposition rate, and wind speeds induced by land use and urban height modifications. PM2.5 deposition flux decreased by 15–20% in the VCs, which was attributed to the roughness height decrease for it weakens aerodynamic resistance (Ra). PBL heights within the VCs decreased 15–100 m, and the entire Shanghai’s PBL heights also decreased in general. The modeling results suggest that VCs may not be as functional as certain urban planners have presumed.

Funder

Shanghai Natural Science Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3