Evaluating Quantitative Precipitation Forecasts Using the 2.5 km CReSS Model for Typhoons in Taiwan: An Update through the 2015 Season

Author:

Wang Chung-Chieh,Chang Chih-Sheng,Wang Yi-Wen,Huang Chien-Chang,Wang Shih-Chieh,Chen Yi-Shin,Tsuboki Kazuhisa,Huang Shin-Yi,Chen Shin-Hau,Chuang Pi-Yu,Chiu Hsun

Abstract

In this study, 24 h quantitative precipitation forecasts (QPFs) by a cloud-resolving model (with a grid spacing of 2.5 km) on days 1–3 for 29 typhoons in six seasons of 2010–2015 in Taiwan were examined using categorical scores and rain gauge data. The study represents an update from a previous study for 2010–2012, in order to produce more stable and robust statistics toward the high thresholds (typically with fewer sample points), which is our main focus of interest. This is important to better understand the model’s ability to predict such high-impact typhoon rainfall events. The overall threat scores (TS, defined as the fraction among all verification points that are correctly predicted to reach a given threshold to all points that are either observed or predicted to reach that threshold, or both) were 0.28 and 0.18 on day 1 (0–24 h) QPFs, 0.25 and 0.16 on day 2 (24–48 h) QPFs, and 0.15 and 0.08 on day 3 (48–72 h) QPFs at 350 mm and 500 mm, respectively, showing improvements over 5 km models. Moreover, as found previously, a strong dependence of higher TSs for larger rainfall events also existed, and the corresponding TSs at 350 and 500 mm for the top 5% of events were 0.39 and 0.25 on day 1, 0.38 and 0.21 on day 2, and 0.25 and 0.12 on day 3. Thus, for the top typhoon rainfall events that have the highest potential for hazards, the model exhibits an even higher ability for QPFs based on categorical scores. Furthermore, it is shown that the model has little tendency to overpredict or underpredict rainfall for all groups of events with different rainfall magnitude across all thresholds, except for some tendency to under-forecast for the largest event group on day 3. Some issues associated with categorical statistics to be aware of are also demonstrated and discussed.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3