Bioactive Ingredients in K. pinnata Extract and Synergistic Effects of Combined K. pinnata and Metformin Preparations on Antioxidant Activities in Diabetic and Non-Diabetic Skeletal Muscle Cells

Author:

Ramon Pedro1,Bergmann Daniela1,Abdulla Hussain1ORCID,Sparks Jean2,Omoruyi Felix23ORCID

Affiliation:

1. Department of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, TX 78412, USA

2. Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA

3. Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA

Abstract

With healthcare costs rising, many affected by ailments are turning to alternative medicine for treatment. More people are choosing to complement their pharmacological regimen with dietary supplements from natural products. In this study, the compound composition of Kalanchoe Pinnata (K. pinnata) and the effects of combined preparations of K. pinnata and metformin on antioxidant activity in human skeletal muscle myoblasts (HSMMs) and human diabetic skeletal muscle myoblasts (DHSMMs) were investigated. Ultraperformance liquid chromatography fusion orbitrap mass spectrometry (UPLC-OT-FTMS) identified biologically active flavanols in K. pinnata. The main compounds identified in locally grown K. pinnata were quercetin, kaempferol, apigenin, epigallocatechin gallate (EGCG), and avicularin. Antioxidant results indicated that a combinatorial preparation of K. pinnata with metformin may modulate antioxidant responses by increasing the enzymatic activity of superoxide dismutase and increasing levels of reduced glutathione. A combination of 50 μM and 150 μg/mL of metformin and K. pinnata, respectively, resulted in a significant increase in reduced glutathione levels in non-diabetic and diabetic human skeletal muscle myoblasts and H2O2-stress-induced human skeletal muscle myoblasts. Additionally, a K. pinnata treatment (400 µg/mL) alone significantly increased catalase (CAT) activity for non-diabetic and diabetic human skeletal muscle myoblasts and a H2O2-stress-induced human skeletal muscle myoblast cell line, while significantly lowering malondialdehyde (MDA) levels. However, the treatment options were more effective at promoting cell viability after 24 h versus 72 h and did not promote cell viability after 72 h in H2O2-stress-induced HSMM cells. These treatment options show promise for treating oxidative-stress-mediated pathophysiological complications associated with type II diabetes.

Funder

Grants-In-Aid of Chemistry Graduate Research Program funded by the Welch Foundation

National Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference68 articles.

1. National Institutes of Health (2017, October 14). Diabetes, Available online: https://medlineplus.gov/diabetes.html.

2. Diabetes Mellitus and Heart Failure;Lehrke;Am. J. Med.,2017

3. Problems associated with glucose toxicity: Role of hyperglycemia-induced oxidative stress;Kawahito;World J. Gastroenterol.,2009

4. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells;Sakai;Biochem. Biophys. Res. Commun.,2003

5. The role of oxidative stress and antioxidants in diabetic complications;Matough;Sultan Qaboos Univ. Med. J.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3