The Interaction Effect of the Design Parameters on the Water Absorption of the Hemp-Reinforced Biocarbon-Filled Bio-Epoxy Composites

Author:

Dahal Raj Kumar1ORCID,Acharya Bishnu2,Dutta Animesh1ORCID

Affiliation:

1. Bio-Renewable Innovation Lab, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada

2. Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada

Abstract

Natural fiber-reinforced composites perform poorly when exposed to moisture. Biocarbon has been proven to improve the water-absorbing behavior of natural fiber composites. However, the interaction effect of the design parameters on the biocarbon-filled hemp fiber-reinforced bio-epoxy composites has not been studied. In this study, the effects of the design parameters (pyrolysis temperature, biocarbon particle size, and filler loading) on the water absorptivity and water diffusivity of hemp-reinforced biopolymer composites have been investigated. Biocarbon from the pyrolysis of hemp and switchgrass was produced at 450, 550, and 650 °C. Composite samples with 10 wt.%, 15 wt.%, and 20 wt.% of biocarbon fillers of sizes below 50, 75, and 100 microns were used. The hemp fiber in polymer composites showed a significant influence in its water uptake behavior with the value of water absorptivity 2.41 × 10−6 g/m2.s1/2. The incorporation of biocarbon fillers in the hemp biopolymer composites reduces the average water absorptivity by 44.17% and diffusivity by 42.02%. At the optimized conditions, the value of water absorptivity with hemp biocarbon and switchgrass biocarbon fillers was found to be 0.72 × 10−6 g/m2.s1/2 and 0.73 × 10−6 g/m2.s1/2, respectively. The biocarbon at 650 °C showed the least composite thickness swelling due to its higher porosity and lower surface area. Biocarbon-filled hemp composites showed higher flexural strength and energy at the break due to the enhanced mechanical interlocking between the filler particles and the matrix materials. Smaller filler particle size lowered the composite’s water diffusivity, whereas the larger particle size of the biocarbon fillers in composites minimizes the water absorption. Additionally, higher filler loading results in weaker composite tensile energy at the break due to the filler agglomeration, reduced polymer-filler interactions, reduced polymer chain mobility, and inadequate dispersion of the filler.

Funder

Natural Sciences and Engineering Research Council of Canada

Agriculture and Agri-Food Canada

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference67 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3