Development and Evaluation of a New “Snow Water Index (SWI)” for Accurate Snow Cover Delineation

Author:

Dixit AbhilashaORCID,Goswami AjantaORCID,Jain Sanjay

Abstract

The current study started by examining the three most established snow indices, namely the NDSI (normalized difference snow index), S3, and NDSII-1 (normalized difference snow and ice index), based on their capabilities to differentiate snow pixels from cloud, debris, vegetation, and water pixels. Furthermore, considering the limitations of these indices, a new spectral index called the snow water index (SWI) is proposed. SWI uses spectral characteristics of the visible, SWIR (shortwave infrared), and NIR (near infrared) bands to achieve significant contrast between snow/ice pixels and other pixels including water bodies. A three-step accuracy assessment technique established the dominance of SWI over NDSI, S3, and NDSII-1. In the first step, image thresholding using standard value (>0), individual index theory (fixed threshold), histogram, and GCPs (ground control points) derived threshold were used to assess the performance of the selected indices. In the second step, comparisons of the spectral separation of features in the individual band were made from the field spectral observations collected using a spectroradiometer. In the third step, GCPs collected using field surveys were used to derive the user’s accuracy, producer’s accuracy, overall accuracy, and kappa coefficient for each index. The SWI threshold varied between 0.21 to 0.25 in all of the selected observations from both ablation and accumulation time. Spectral separability plots justify the SWI’s capability of extraction and removal of the most critical water pixels in integration with other impure classes from snow/ice pixels. GCP enabled accuracy assessment resulted in a maximum overall accuracy (0.93) and kappa statistics (0.947) value for the SWI. Thus, the results of the accuracy assessment justified the supremacy of the SWI over other indices. The study revealed that SWI demonstrates a considerably higher correlation with actual snow/ice cover and is prominent for spatio-temporal snow cover studies globally.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference69 articles.

1. Snowmelt runoff modelling in a Himalayan basin with the aid of satellite data

2. Ecological Climatology, Concepts and Applications;Bonan,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3