Abstract
To investigate the characteristics of sea clutter, based on ocean surface electromagnetic scattering theory, the first- and second-order ocean surface scattering cross sections for bistatic high-frequency (HF) radar incorporating a multi-frequency six degree-of-freedom (DOF) oscillation motion model are mathematically derived. The derived radar cross sections (RCSs) can be reduced to the floating platform based monostatic case or onshore bistatic case for corresponding geometry setting. Simulation results show that the six DOF oscillation motion will result in more additional peaks in the radar Doppler spectra and the amplitudes and frequencies of these motion-induced peaks are decided by the amplitudes and frequencies of the oscillation motion. The effect of the platform motion on the first-order radar spectrum is greater than that of the second-order, and the motion-induced peaks in the first-order spectrum may overlap with the second-order spectrum. Furthermore, yaw is the dominant factor affecting the radar spectra, especially the second-order. Moreover, the effect of platform motion on radar spectra and the amplitudes of the second-order spectrum decreases as the bistatic angle increases. In addition, it should be noted that the amplitudes of the Bragg peaks may be lower than those of the motion-induced peaks due to the low frequency (LF) oscillation motion of the floating platform, which is an important finding for the applications of the floating platform based bistatic HF radar in moving target detection and ocean surface dynamics parameter estimation.
Subject
General Earth and Planetary Sciences
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献