Multiscale Assessment of Nanoscale Manufacturing Process on the Freeform Copper Surface

Author:

Xu Yafei,Liu Handing,Zhang Liuyang,Becton Matthew

Abstract

The nanocutting has been paid great attention in ultra-precision machining and high sealing mechanical devices due to its nanometer level machining accuracy and surface quality. However, the conventional methods applicable to reproduce the cutting process numerically such as finite element (FE) and molecular dynamics (MD) are challenging to unveil the cutting machining mechanism of the nanocutting due to the limitation of the simulation scale and computational cost. Here a modified quasi-continuous method (QC) is employed to analyze the dynamic nanocutting behavior (below 10 nm) of the copper sample. After preliminary validation of the effectiveness via the wave propagation on the copper ribbon, we have assessed the effects of cutting tool parameters and back-engagement on the cutting force, stress distribution and surface metamorphic layer depth during the nanocutting process of the copper sample. The cutting force and depth of the surface metamorphic layer is susceptible to the back-engagement, and well tolerant to the cutting tool parameters such as the tool rank angle and tool rounded edge diameter. The results obtained by the QC method are comparable to those from the MD method, which indicate the effectiveness and applicability of the modified QC method in the nanocutting process. Overall, our work provides an applicable and efficient strategy to investigate the nanocutting machining mechanism of the large-scale workpiece and shed light on its applications in the super-precision and high surface quality devices.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3