Using Different Levels of Information in Planning Green Infrastructure in Luanda, Angola

Author:

Amado MiguelORCID,Rodrigues Evelina,Poggi FrancescaORCID,Pinheiro Manuel DuarteORCID,Amado António Ribeiro,José Helder

Abstract

Integrating natural processes to build areas through the creation of green infrastructure (GI) in Africa with its rapid urbanisation is a challenge because of the information base. The aim of this paper is planning a GI linking biophysical, social, and legal contents in a specific Africa country with an approach that combines different scales and different levels of data and information. The paper proposes a framework beginning at the macro scale to integrate and operationalise the definition of GI in an African context, namely for the Luanda metropolitan area. The approach to nature and ecological structure (GI) has four phases: analysis, integration, diagnosis and proposal. All steps are developed in a GIS environment and consider variations in the biophysical, social, cultural, and legal dimensions. The research discusses the problems in collecting existing information and leads with missing data within the context of urbanisation growth and climate change adaptation. The proposed green infrastructure includes protected areas (existing and proposed), natural values, risk areas, rivers, and agricultural areas, to increase resilience and flexibility in an adaptation context. The results allow to include in the GI the mangrove areas, native flora, vegetated slopes, and riverbanks, providing a buffering function for natural hazards, crucial for these regions, with the aim to achieve the needs of creating a strategic GI to be implemented into the Luanda General Master Plan.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3