Transmission Characteristics of the Macropore Flow in Vegetated Slope Soils and Its Implication for Slope Stability

Author:

Bao Jingkun1,Wang Kun2ORCID,Xu Zemin2

Affiliation:

1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China

Abstract

Macropores in the soil of vegetated slopes greatly affect the rainfall infiltration process. In this paper, a realistic 3D macropore network model of a soil column sample is established by CT scanning. Then, the transmission process of the macropore flow is simulated based on MODFLOW. The results show that (1) the shapes of macropores in the soil contain not only the dominant proportion of the circular tube but also a small proportion of the flake. (2) The velocity of macropore flow has a maximum of up to 0.2~0.3 m/s, which is much higher than that of matrix flow. In every single macropore, the flow velocity is the greatest at the central axis perpendicular to the extension and at the throat along the extension. (3) Due to the development of the macropore network system, rainwater can quickly pass through the soil profile in the form of preferential flow or pipe flow, which shortens the lag time of the peak discharge response to rainfall. This process can free up space for the next recharge, but reduce the overall quality of the soil, laying the foundation for the slope failure. Our work helps to unravel the mechanism of rainfall-induced landslides and promote harmony and sustainable development between humans and nature.

Funder

Yunnan Fundamental Research Projects

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3