Recent Advances and Challenges in Ti-Based Oxide Anodes for Superior Potassium Storage

Author:

Deng Qinglin12ORCID,Zhao Yang12,Zhu Xuhui12,Yang Kaishuai3ORCID,Li Mai4ORCID

Affiliation:

1. School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China

2. Research Center for Advanced Information Materials (CAIM), Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China

3. School of Electronic and Information Engineering, Changshu Institute of Technology, Suzhou 215000, China

4. College of Science, Donghua University, Shanghai 201620, China

Abstract

Developing high-performance anodes is one of the most effective ways to improve the energy storage performances of potassium-ion batteries (PIBs). Among them, Ti-based oxides, including TiO2, K2Ti6O13, K2Ti4O9, K2Ti8O17, Li4Ti5O12, etc., as the intrinsic structural advantages, are of great interest for applications in PIBs. Despite numerous merits of Ti-based oxide anodes, such as fantastic chemical and thermal stability, a rich reserve of raw materials, non-toxic and environmentally friendly properties, etc., their poor electrical conductivity limits the energy storage applications in PIBs, which is the key challenge for these anodes. Although various modification projects are effectively used to improve their energy storage performances, there are still some related issues and problems that need to be addressed and solved. This review provides a comprehensive summary on the latest research progress of Ti-based oxide anodes for the application in PIBs. Besides the major impactful work and various performance improvement strategies, such as structural regulation, carbon modification, element doping, etc., some promising research directions, including effects of electrolytes and binders, MXene-derived TiO2-based anodes and application as a modifier, are outlined in this review. In addition, noteworthy research perspectives and future development challenges for Ti-based oxide anodes in PIBs are also proposed.

Funder

National Natural Science Foundation of China

Guangzhou Science and Technology Plan Project

Talent Cultivation Project of Guangzhou University

Guangzhou Basic Research Program, City & University (Institute) Joint Funding Project

Key Discipline of Materials Science and Engineering, Bureau of Education of Guangzhou

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3