A Novel Method of Human Joint Prediction in an Occlusion Scene by Using Low-Cost Motion Capture Technique

Author:

Niu JianweiORCID,Wang Xiai,Wang Dan,Ran Linghua

Abstract

Microsoft Kinect, a low-cost motion capture device, has huge potential in applications that require machine vision, such as human-robot interactions, home-based rehabilitation and clinical assessments. The Kinect sensor can track 25 key three-dimensional (3D) “skeleton” joints on the human body at 30 frames per second, and the skeleton data often have acceptable accuracy. However, the skeleton data obtained from the sensor sometimes exhibit a high level of jitter due to noise and estimation error. This jitter is worse when there is occlusion or a subject moves slightly out of the field of view of the sensor for a short period of time. Therefore, this paper proposed a novel approach to simultaneously handle the noise and error in the skeleton data derived from Kinect. Initially, we adopted classification processing to divide the skeleton data into noise data and erroneous data. Furthermore, we used a Kalman filter to smooth the noise data and correct erroneous data. We performed an occlusion experiment to prove the effectiveness of our algorithm. The proposed method outperforms existing techniques, such as the moving mean filter and traditional Kalman filter. The experimental results show an improvement of accuracy of at least 58.7%, 47.5% and 22.5% compared to the original Kinect data, moving mean filter and traditional Kalman filter, respectively. Our method provides a new perspective for Kinect data processing and a solid data foundation for subsequent research that utilizes Kinect.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3