Orographic Precipitation Extremes: An Application of LUME (Linear Upslope Model Extension) over the Alps and Apennines in Italy

Author:

Abbate AndreaORCID,Papini MonicaORCID,Longoni LauraORCID

Abstract

Critical hydrometeorological events are generally triggered by heavy precipitation. In complex terrain, precipitation may be perturbed by the upslope raising of the incoming humid airflow, causing in some cases extreme rainfall. In this work, the application of LUME—Linear Upslope Model Extension—to a group of extreme events that occurred across mountainous areas of the Central Alps and Apennines in Italy is presented. Based on the previous version, the model has been “extended” in some aspects, proposing a methodology for physically estimating the time-delay coefficients as a function of precipitation efficiency. The outcomes of LUME are encouraging for the cases studied, revealing the intensification of precipitation due to the orographic effect. A comparison between the reference rain gauge data and the results of the simulations showed good agreement. Since extreme precipitation is expected to increase due to climate change, especially across the Mediterranean region, LUME represents an effective tool to investigate more closely how these extreme phenomena originate and evolve in mountainous areas that are subject to potential hydrometeorological risks.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3