Affiliation:
1. Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
Abstract
The resistive random-access memory (RRAM) with multi-level storage capability has been considered one of the most promising emerging devices to mimic synaptic behavior and accelerate analog computations. In this study, we investigated the reset-first bipolar resistive switching (RS) and multi-level characteristics of a LaNiO3−x thin film deposited using a reactive magnetron co-sputtering method. Polycrystalline phases of LaNiO3 (LNO), without La2O3 and NiO phases, were observed at similar fractions of Ni and La at a constant partial pressure of oxygen. The relative chemical proportions of Ni3+ and Ni2+ ions in LaNiO3−x indicated that it was an oxygen-deficient LaNiO3−x thin film, exhibiting RS behavior, compared to LNO without Ni2+ ions. The TiN/LaNiO3−x/Pt devices exhibited gradual resistance changes under various DC/AC voltage sweeps and consecutive pulse modes. The nonlinearity values of the conductance, measured via constant-pulse programming, were 0.15 for potentiation and 0.35 for depression, indicating the potential of the as-fabricated devices as analog computing devices. The LaNiO3−x-based device could reach multi-level states without an electroforming step and is a promising candidate for state-of-the-art RS memory and synaptic devices for neuromorphic computing.
Funder
Ministry of Trade, Industry and Energy, Korea
Subject
General Materials Science
Reference60 articles.
1. Rare-earth nickelates RNiO3: Thin films and heterostructures;Catalano;Rep. Prog. Phys.,2018
2. Metal-insulator transitions, structural and microstructural evolution of RNiO3 (R = Sm, Eu, Gd, Dy, Ho, Y) perovskites: Evidence for room-temperature charge disproportionation in monoclinic HoNiO3 and YNiO3;Alonso;J. Am. Chem. Soc.,1999
3. Metal-insulator transition;Mott;Rev. Mod. Phys.,1968
4. Liu, J. (2012). Mott Transition and Electronic Structure in Complex Oxide Heterostructures. [Ph.D. Thesis, University of Arkansas].
5. Mott-transition-based RRAM;Wang;Mater. Today,2019
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献