Primary Implant Stability Analysis of Different Dental Implant Connections and Designs—An In Vitro Comparative Study

Author:

Raz PerryORCID,Meir Haya,Levartovsky ShifraORCID,Sebaoun Alon,Beitlitum Ilan

Abstract

Primary implant stability can be evaluated at the time of placement by measuring the insertion torque (IT). However, another method to monitor implant stability over time is resonance frequency analysis (RFA). Our aim was to examine the effect of bone type, implant design, and implant length on implant primary stability as measured by IT and two RFA devices (Osstell and Penguin) in an in vitro model. Ninety-six implants were inserted by a surgical motor in an artificial bone material, resembling soft and dense bone. Two different implant designs—conical connection (CC) and internal hex (IH), with lengths of 13 and 8 mm, were compared. The results indicate that the primary stability as measured by RFA and IT is significantly increased by the quality of bone (dense bone), and implant length and design, where the influence of dense bone is similar to that of CC design. Both the Osstell and Penguin devices recorded higher primary implant stability for long implants in dense bone, favoring the CC over the IH implant design. The CC implant design may compensate for the low stability expected in soft bone, and dense bone may compensate for short implant length if required by the anatomical bone conditions.

Publisher

MDPI AG

Subject

General Materials Science

Reference35 articles.

1. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions

2. Present Status of Immediate Loading of Oral Implants

3. Assessment of implant stability as a prognostic determinant;Meredith;Int. J. Prosthodont.,1998

4. Measurement of dental implant stability by resonance frequency analysis: A review of the literature

5. Mechanisms of endosseous integration;Davies;Int. J. Prosthodont.,1998

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3