Author:
Zang Wenchuan,Chen Ming,Guo Tingting,Luan Xin,Song Dalei
Abstract
Glider-based mobile currents observations are gaining increasing research attention. However, the quality of such observations is directly related to the pitch accuracy of the glider. As a buoyancy-driven robot, the glider will be strongly disturbed during the passage through the pycnocline. The pycnocline refers to the oceanic phenomenon where the density of the seawater changes abruptly with respect to depth. The presence of the pycnocline influences the pitch of the glider and consequently affects the quality of the observed currents data. In this work, we propose an actuator constrained active disturbance rejection controller (ACADRC) to improve the accuracy of the pitch angle control when gliders move across the pycnocline. For this purpose, the dynamical model of the glider is first derived. Then, the longitudinal plane motion model of the glider considering the density variation is analyzed. Based on that, we discuss three typical types of pycnocline encountered during glider profiling, which are the pycnocline, the inverted pycnocline and the multiple pycnocline. To alleviate the low accuracy of bang-bang control and proportion integration differentiation control, and furthermore, to mitigate the disturbance of pitch by sudden density changes, we propose the actuator constrained active disturbance rejection controller in conjunction with specific glider pitch actuator hardware constraints. Simulation results show that the proposed method has significant improvement in pitch control accuracy over the comparison methods.
Funder
Fundamental Research Funds for the Central Universities
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering