A Prototypical Network-Based Approach for Low-Resource Font Typeface Feature Extraction and Utilization

Author:

Li KangyingORCID,Batjargal BiligsaikhanORCID,Maeda AkiraORCID

Abstract

This paper introduces a framework for retrieving low-resource font typeface databases by handwritten input. A new deep learning model structure based on metric learning is proposed to extract the features of a character typeface and predict the category of handwrittten input queries. Rather than using sufficient training data, we aim to utilize ancient character font typefaces with only one sample per category. Our research aims to achieve decent retrieval performances over more than 600 categories of handwritten characters automatically. We consider utilizing generic handcrafted features to train a model to help the voting classifier make the final prediction. The proposed method is implemented on the ‘Shirakawa font oracle bone script’ dataset as an isolated ancient-character-recognition system based on free ordering and connective strokes. We evaluate the proposed model on several standard character and symbol datasets. The experimental results showed that the proposed method provides good performance in extracting the features of symbols or characters’ font images necessary to perform further retrieval tasks. The demo system has been released, and it requires only one sample for each character to predict the user input. The extracted features have a better effect in finding the highest-ranked relevant item in retrieval tasks and can also be utilized in various technical frameworks for ancient character recognition and can be applied to educational application development.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Reference39 articles.

1. ETRVSCA Sans-Font Typefacehttps://arro.anglia.ac.uk/id/eprint/705654/

2. The Shirakawa Shizuka Institute of East Asian Characters and Culture, Shirakawa Font Projecthttp://www.ritsumei.ac.jp/acd/re/k-rsc/sio/shirakawa/index.html

3. MERO_HIE Hieroglyphics Fonthttps://www.dafont.com/meroitic-hieroglyphics.font

4. Aboriginebats Fonthttps://www.dafont.com/aboriginebats.font

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3