Discrimination between Modal, Breathy and Pressed Voice for Single Vowels Using Neck-Surface Vibration Signals

Author:

Lei Zhengdong,Kennedy Evan,Fasanella Laura,Li-Jessen Nicole Yee-Key,Mongeau LucORCID

Abstract

The purpose of this study was to investigate the feasibility of using neck-surface acceleration signals to discriminate between modal, breathy and pressed voice. Voice data for five English single vowels were collected from 31 female native Canadian English speakers using a portable Neck Surface Accelerometer (NSA) and a condenser microphone. Firstly, auditory-perceptual ratings were conducted by five clinically-certificated Speech Language Pathologists (SLPs) to categorize voice type using the audio recordings. Intra- and inter-rater analyses were used to determine the SLPs’ reliability for the perceptual categorization task. Mixed-type samples were screened out, and congruent samples were kept for the subsequent classification task. Secondly, features such as spectral harmonics, jitter, shimmer and spectral entropy were extracted from the NSA data. Supervised learning algorithms were used to map feature vectors to voice type categories. A feature wrapper strategy was used to evaluate the contribution of each feature or feature combinations to the classification between different voice types. The results showed that the highest classification accuracy on a full set was 82.5%. The breathy voice classification accuracy was notably greater (approximately 12%) than those of the other two voice types. Shimmer and spectral entropy were the best correlated metrics for the classification accuracy.

Funder

Foundation for the National Institutes of Health

Canadian Institutes of Health Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3